<u>Session two – This session will focus on a sustainable housing, challenging the</u> young people to design a sustainable low carbon house.

In the UK, housing developments produce a lot of carbon:

- During construction it takes between 50 and 80 tonnes of CO2 to build to build your average UK house¹.
- During use the average household in the UK emits 2.7 tonnes of CO2 every year from heating their home¹.

To reduce carbon and increase sustainability creative solutions are needed.

Therefore, we would like the students to design a sustainable low carbon house which is connected to nature, creates a sense of community and is energy efficient.

To help give them some ideas we have given them five points/hints about what they may want to consider.

- Location accessible, near public transport
- Outdoor spaces Garden or shared garden? Play spaces? Allotments? Nature?
- Materials Walls, insulation, roof, window
- Energy and water Renewables? water catchment?
- Parking Do you want any? Do you want bike storage? Do you want electric car points?

To support the students with this task, the teachers and volunteers will be given this support sheet with further tips and useful information.

The aim of this exercise is for the students to be creative as they will think of things we have never considered. Therefore, this sheet is not prescriptive, and the students do not need to consider or include everything on here, it just offers guidance points for you discuss with them if they get stuck.

Additionally, this sheet includes a reference list for the teachers with the resources used in the session in case they want further information about a topic.

Location

20-minute neighbourhoods² – This is a geography and planning concept which describes areas where people can meet their everyday needs within a short walk or cycle. Therefore, sustainable housing should be:

- Well connected to services and facilities e.g., schools, doctors, shops etc
- Near public transport and pedestrian links
- Near green spaces or parks This is especially important for flats because they may not have access to a garden.

Outdoor spaces

The students may want to consider what type of outdoor space they will provide, or they could do a mixture of things. Examples with pros and cons are outlined below:

Outdoors	Pros	Cons
Private garden	 Own space to with what they want 	 Can be lonely – especially during covid19 lockdowns
Shared garden	 Creates community 	 Can cause conflicts with neighbours Who looks after it?
Play spaces e.g., swings	 Encourage interaction Increase activity 	SafetyMaintenance
Allotments	Access to fresh local produceCould sell excess	 Look bad when not in use
Nature e.g., bird boxes or beehives	Supports animalsCould sell honey	 Can be time consuming and expensive

Materials

The students shoud look at alternative building materials. This is likely where they can get most creative because anything goes as long as they can justify why they used it so this section is smaller then others

Some examples:

Insulation – Natural woodfibre insulation, straw bale, insulated panel construction, sheep wool

External (the main thing for exturnal materials is it needs to withstand weather) – Timber clad

Windows/ doors - double or triple glazing, insulated window frames

Roof – green roof using Sedum or moss or blues roofs or solar panel covered roof

<u>Energy</u>

Renewable energy³ is crucial when making housing which is sustainable and low carbon. This can be done on a large scale (for a community) or on small scale (for an individual house or group of housing). There are examples with some advantages and disadvantages below:

Energy Resource	Advantages	Disadvantages		
Large scale				
Wave generators	 cheap to run 	Expensive to set up		

	 Scotland has a lot of coastline 	When waters calm production is low		
Tidal generators	 cheap to run 	 Very expensive to set up could be hazardous to local wildlife 		
Hydroelectric power stations	 cheap to run pairs well with other renewables 	 Expensive to set up output could be affected by drought the reservoirs needed are large 		
Wind turbines	cheap to runeffective	 Expensive to set up wind does not always blow 		
Small scale				
Solar panels	 cheap to run earn money for extra electric produced 	Not always sunnyHigh initial costs		
Ground source heat ⁴	 Provides cooling and heating Eligible for grants Virtually silent 	 Cannot be used everywhere High installation costs 		
Air source heat	Easy installationLong lifespanHigh performance	 Can be noisy Supplies less heat than boilers 		
Biomass	Supports waste	Still releases some		

<u>Water</u>

There are various options when it comes to reducing flood risk, increasing water quality, and decreasing water wastage. Two examples are explored below:

Sustainable urban drainage

Aims to manage the surface water run-off by mimicing natural drainage. SUDs can also be used as play space⁵. Some SUDS techniques:

- green roofs
- permeable surfaces
- infiltration trenches filter drains and filter strips
- swales shallow drainage channels
- detention basins, purpose built ponds and wetlands -

Rainwater collection

Rainwater collection is collecting the run-off from a structure or other impervious surface to store it for later use. Rainwater collection systems can be as simple as collecting rain in a rain barrel or as elaborate as harvesting rainwater into large reservoirs.

Rainwater collection is good for water conservation, reducing flood risk. The rainwater collection in the uk can be used for non-potable (not for drinking) use eg water your garden, toilets, and clothes washer etc.

As of 2019, transport was the largest-emitting sector of the UK economy, accounting for 27% of total UK greenhouse gas (GHG) emissions⁶. Therefore the students should consider alternatives to the petrol/diesel cars we use today. Such as:

Туре	Pros	Cons
Bikes	 Improve fitness 	 Not good for
	 No emmisions 	shopping
Electric charging points	No emmisions	 Would increase electric bill
Shared cars	 Less emmisions 	Could be conflict

Rferences

- citu (2020). What is the carbon footprint of a house? Available at: https://citu.co.uk/citu-live/what-is-the-carbon-footprint-of-a-house [Accessed 01/12/2021]
- tcpa (2021) Guide: The 20 Minute Neighbourhood Available at: <u>https://www.tcpa.org.uk/guide-the-20-minute-neighbourhood</u> [Accessed 02/12/2021]
- BBC (2021) GCSE ENERGY: Renewable energy Available at: <u>https://www.bbc.co.uk/bitesize/guides/z3tjcwx/revision/2</u> [Accessed 19/12/2021]
- 4. Greenmatch (2016) pros and cons of ground source heat pumps Available at: <u>https://www.greenmatch.co.uk/blog/2016/01/pros-and-cons-of-ground-source-heat-pumps</u> [Accessed 19/12/2021]
- Local Government Association (2021) Sustainable drainage systems Available at: <u>https://www.local.gov.uk/topics/severe-</u> weather/flooding/sustainable-drainage-systems [Accessed 19/12/2021]
- 6. HMGovernment (2021) Electric vehicles and Infrastructure Available at: https://researchbriefings.files.parliament.uk/documents/CBP-7480/CBP-7480.pdf [Accessed 19/12/2021]